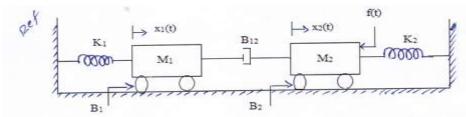
# SIDDARTHA INSTITUTE OF SCIENCE AND TECHNOLOGY:: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

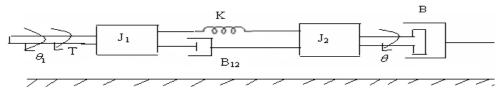
## **QUESTION BANK (DESCRIPTIVE)**

**Subject with Code :**Control Systems (18EE0211) Course & Branch: B.Tech-

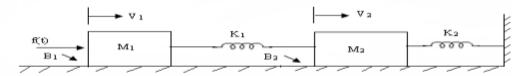
EEE&ECE


Year & Sem: III-B.Tech & I-Sem **Regulation:** R18

# UNIT -I

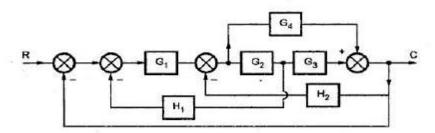

### **CONTROL SYSTEMS CONCEPTS**

Q.1 For the mechanical system shown in Fig, determine the transfer [L3,CO1] 10M


functions 
$$\frac{X1(s)}{F(s)} & \frac{X2(s)}{F(s)}$$



[L3,CO1] 10M **Q.2** Write the differential equations governing the mechanical rotational system shown in the figure and find transfer function.




For the mechanical system shown in the figure draw the force-voltage and [L6,CO1] 10M **Q.3** force-current analogous circuits.



- Compare open loop and closed loop control systems based on different [L2,CO1] 6M **Q.4** aspects?
  - Distinguish between Block diagram Reduction Technique and Signal Flow [L2,CO1] 4M Graph?

Q.5 Using Block diagram reduction technique find the Transfer Function of the [L5,CO1] 10M system.

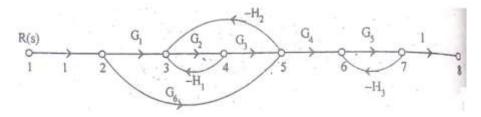


**Q.6** a. Give the block diagram reduction rules to find the transfer function of the system.

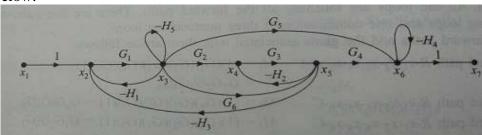
[L2,CO1] 8M

b. List the properties of signal flow graph.

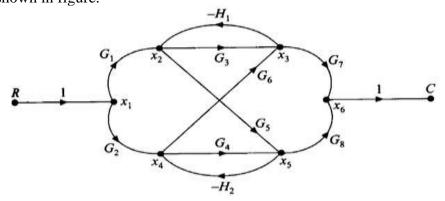
[L1,CO1] 4M


Q.7 For the system represented in the given figure, determine transfer function C(S)/R(S).

[L3,CO1] 10M




**Q.8** Find the overall transfer function of the system whose signal flow graph is shown below.


[L5,CO1] 10M



Q.9 Obtain the transfer function of the system whose signal flow graph is shown [L3,CO1] 10M below.



Using mason gain formula find the transfer function  $\frac{c}{R}$  for the signal flow graph [L3,CO1] 10M Q.10 shown in figure.



- Q.11 i) Define control systems?
- [L1,CO1] 2M
- ii) What is feedback? What type of feedback is employed in control systems?
- [L2,CO1] 2M [L1,CO1] 2M

iii) Define transfer function?

- [L2,CO1] 2M
- iv) What is block diagram? What are the basic components of block diagram?

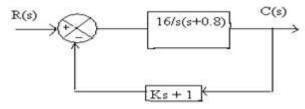
v) Explain transmittance

# [L4,CO1] 2M

Page 3

## **UNIT-II**

## TIME RESPONSE ANALYSIS


- List out the time domain specifications and derive the expressions for Rise **Q.1** [L1,CO2] 10M time. Peak time and Peak overshoot.
- Find all the time domain specifications for a unity feedback control system [L2,CO2] 10M **Q.2** whose open loop transfer function is given by  $G(S) = \frac{25}{S(S+5)}$ .
- A closed loop servo is represented by the differential equation:  $\frac{d^2c}{dt^2} + 8\frac{dc}{dt} = \frac{[L3,CO2]}{L3}$  10M **Q.3** 64e. Where 'c' is the displacement of the output shaft, 'r' is the displacement of the input shaft and e = r - c. Determine undamped natural frequency, damping ratio and percentage maximum overshoot for unit step input.

CONTROL SYSTEMS

- Q.4 Measurements conducted on a servo mechanism, show the system response to [L3,CO2] 5M be  $c(t) = 1+0.2e^{-60t}$ - 1.2e<sup>-10t</sup> When subject to a unit step input. Obtain an expression for closed loop transfer function, determine the undamped natural frequency, damping ratio?
  - For servo mechanisms with open loop transfer function given below what type [L3,CO2] 5M of input signal give rise to a constant steady state error and calculate their values.

$$G(s)H(s) = \frac{10}{S^2(S+1)(S+2)}$$

- **Q.5** A unity feedback control system has an open loop transfer function, G(s) = [L5,CO2] 10M  $\frac{10}{S(S+2)}$ . Find the rise time, percentage overshoot, peak time and settling time for a step input of 12 units.
- Q.6 Define steady state error? Derive the static error components for Type 0, Type [L1,CO2] 10M 1 & Type 2 systems?
- A positional control system with velocity feedback shown in figure. What is [L3,CO2] 10M Q.7 the response c(t) to the unit step input. Given that damping ratio=0.5.Also determine rise time, peak time, maximum overshoot and settling time.



A For servo mechanisms with open loop transfer function given below what [L3,CO2] 5M **Q.8** type of input signal give rise to a constant steady state error and calculate their values.

$$G(s)H(s) = \frac{20(S+2)}{S(S+1)(S+3)}$$

- Consider a unity feedback system with a closed loop transfer function  $\frac{C(S)}{R(S)}$  = [L3,CO2] 5M
  - $\frac{KS+b}{(S^2+aS+b)}$ . Calculate open loop transfer function G(s). Show that steady state

input is given by  $\frac{(a-K)}{h}$ 

error with unit ramp

- For a unity feedback control system the open loop transfer function **Q.9** [L3,CO2] 10M  $G(S) = \frac{10(S+2)}{S^2(S+1)}.$ 
  - (i) Determine the position, velocity and acceleration error constants.

- (ii) The steady state error when the input is  $\mathbf{R}(\mathbf{S}) = \frac{3}{S} \frac{2}{S^2} + \frac{1}{3S^3}$ .
- Q.10 What is the characteristic equation? List the significance of characteristic [L1,CO2] 2M
  - The system has  $G(s) = \frac{K}{S(1+ST)}$  with unity feedback where K & T are constant. [L3,CO2] 8M Determine the factor by which gain 'K' should be multiplied to reduce the overshot from 75% to 25%?
- How the system is classified depending on the value of damping ratio? [L4,CO2] 2M **Q.11** i)
  - ii) List the time domain specifications? [L1,CO2] 2M
  - iii) Define peak overshoot? [L1,CO2] 2M
  - iv) Define accelerating error constant? [L1,CO2] 2M
  - v) What is the need for a controller? [L2,CO2] 2M

### **UNIT-III**

# STABILITY ANALYSIS IN CONTROL SYSTEMS

Q.1 With the help of Routh's stability criterion find the stability of the following [L5,CO3] 10M systems represented by the characteristic equations:

(a) 
$$s^4 + 8 s^3 + 18 s^2 + 16s + 5 = 0$$
.

(b) 
$$s^6 + 2s^5 + 8s^4 + 12s^3 + 20s^2 + 16s + 16 = 0$$
.

Q.2 With the help of Routh's stability criterion find the stability of the following [L5,CO3] 10M systems represented by the characteristic equations:

(a) 
$$s^5 + s^4 + 2 s^3 + 2 s^2 + 3s + 5 = 0$$

(b) 
$$9s^5 - 20s^4 + 10s^3 - s^2 - 9s - 10 = 0$$

**Q.3** The open loop Transfer function of a unity feedback control system is given [L3,CO3] 10M by  $G(s)H(s) = \frac{K}{(S+2)(S+4)(S^2+6S+25)}$  Determine the value of K which will cause sustained oscillations in the closed loop system and what is the corresponding oscillation Frequency.

CONTROL SYSTEMS

- Q.4 Determine the range of K for stability of unity feedback system whose open [L3,CO3] 10M loop transfer function is G(s)  $H(s) = \frac{K}{S(S+1)(S+2)}$  using Routh's stability criterion.
- Explain the procedure for constructing root locus. **Q.5**

- [L2,CO3] 10M
- **Q.6** Sketch the root locus of the system whose open loop transfer function is
- [L3,CO3] 10M

- $G(s) H(s) = \frac{K}{S(S+2)(S+4)}$ .
- **Q.7** Sketch the root locus of the system whose open loop transfer function is
- [L3,CO3] 10M

- **G**(s) **H**(s) =  $\frac{K}{S(S^2+4S+13)}$
- Sketch the root locus of the system whose open loop transfer function is **Q.8**
- [L3,CO3] 10M

- G(s) H(s) =  $\frac{K(S+9)}{S(S^2+4S+11)}$
- **Q.9** Sketch the root locus of the system whose open loop transfer function is
- [L3,CO3] 10M

- G(s) H(s) =  $\frac{K(S^2+6S+25)}{S(S+1)(S+2)}$
- Q.10 Sketch the root locus of the system whose open loop transfer function is
- [L3,CO3] 10M

- $G(s)H(s) = \frac{K}{S(S^2+6S+10)}$
- Q.11 Explain BIBO stability? i)

[L12,CO3] 2M

What is the necessary condition for stability?

[L2,CO3] 2M

Define root locus?

[L1,CO3] 2M

What is centroid? How the centroid is calculated?

[L2,CO3] 2M

What is limitedly stable system?

[L2,CO3] 2M

### **UNIT-IV**

### FREQUENCY RESPONSE ANALYSIS

- Q.1 Sketch the Bode plot for the following transfer function G(s)H(s) =
- [L3,CO4] 10M

- ${\rm K}\,{\rm e}^{-0.1{\rm s}}$  $\overline{S(S+1) (1+0.1S)}$
- Q.2 Sketch the Bode plot for the system having the following transfer function [L3,CO4] 10M

$$G(s) = \frac{15 (S+5)}{S(S^2 + 16S + 100)}$$

CONTROL SYSTEMS

Define and derive the expression for resonant frequency. Q.3

[L1,CO4] 5M

Draw the magnitude bode plot for the system having the following

[L3,CO4] 5M

transfer function:

$$G(s) H(s) = \frac{2000 (S+1)}{S(S+10) (S+40)}$$

- **Q.4** Derive the expressions for resonant peak and resonant frequency and [L3,CO4] 10M hence establish the correlation between time response and frequency response.
- Draw the Bode plot for the following Transfer Function G(s) H(s) =[L3,CO4] 10M **Q.5** 20(0.1S+1) $\overline{S^2(0.2S+1)(0.02S+1)}$

From the bode plot determine (a) Gain Margin (b) Phase Margin (c) Comment on the stability

- Q.6 Given  $\xi = 0.7$  and  $\omega_n = 10$  rad/sec. Calculate resonant peak, resonant [L3,CO4] 5M frequency and bandwidth.
  - Sketch the polar plot for the open loop transfer function of a unity feedback [L3,CO4] 5M system is given by  $G(s) = \frac{1}{S(1+S)(1+2S)}$ . Determine Gain Margin & Phase Margin.
- A system is given by G(s)  $H(s) = \frac{(4S+1)}{S^2(S+1)(2S+1)}$  Sketch the nyquist plot Q.7 [L3,CO4] 10M and determine the stability of the system.
- Draw the Nyquist plot for the system whose open loop transfer function [L3,CO4] 10M **Q.8** is,  $G(s)H(s) = \frac{K}{S(S+2)(S+10)}$ . Determine the range of K for which closed loop system is stable.
- **Q.9** Obtain the transfer function of Lead Compensator, draw pole-zero plot and [L3,CO4] 10M write the procedure for design of Lead Compensator using Bode plot.
- Q.10 Obtain the transfer function of Lag Compensator, draw pole-zero plot and [L3,CO4] 10M write the procedure for design of Lag Compensator using Bode plot.
- Q.11 i) Define phase margine? [L1,CO4] 2M
  - Write the expression for resonant peak and resonant frequency? [L3,CO4] 2M
  - iii) What is phase and gain cross over frequency? [L2,CO4] 2M
  - iv) What are the frequency domain specifications? [L2,CO4] 2M
  - v) What is frequency response? [L2,CO4] 2M

# **UNIT-V**

### STATE SPACE ANALYSIS

- Q.1 Determine the Solution for Homogeneous and Non homogeneous State [L3,CO5] 10M equations
- [L3,CO5] 10M **Q.2** For the state equation:  $\dot{X} = \begin{pmatrix} 0 & 1 \\ -2 & -3 \end{pmatrix} X + \begin{pmatrix} 0 \\ 1 \end{pmatrix} U$  with the unit step input and the initial conditions are  $X(0) = {1 \choose 1}$ . Solve the following (a) State transition matrix
  - (b) Solution of the state equation.
- **Q.3** A system is characterized by the following state space equations: [L3,CO5]

$$\dot{X}_{1} = -3 x_{1} + x_{2}; \quad \dot{X}_{2} = -2 x_{1} + u; Y = x_{1}$$

(a) Find the transfer function of the system and Stability of the system.

5M 5M

5M

- (b) Compute the STM
- State the properties of State Transition Matrix. **Q.4**

[L1,CO5] 5M

[L3,CO5]

- Diagonalize the following system matrix  $A = \begin{pmatrix} 0 & 6 & -5 \\ 1 & 0 & 2 \\ 2 & 2 & 4 \end{pmatrix}$
- Find state variable representation of an armature controlled D.C.motor. **Q.5** [L2,CO5] 5M
  - A state model of a system is given as:

[L3,CO5] 5M

$$\dot{X} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{pmatrix} X + \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} U \text{ and } Y = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix} X$$

Determine: (i) The Eigen Values. (ii) The State Transition Matrix.

- Derive the expression for the transfer function and poles of the system **Q.6** [L3,CO5] 5M from the state model.  $\dot{X} = Ax + Bu$  and y = Cx + Du
  - [L3,CO5] 5M Diagonalize the following system matrix  $A = \begin{pmatrix} 4 & 1 & -2 \\ 1 & 0 & 2 \\ 1 & 1 & 2 \end{pmatrix}$
- **Q.7** Obtain a state model for the system whose Transfer function is given by [L2,CO5] 10M

$$G(s) \; H(s) = \frac{(7S^2 + 12S + 8)}{(S^3 + 6S^2 + 11S + 9)}$$

State the properties of STM. Q.8

[L1,CO5] 3M b. For the state equation:  $\dot{X} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} X + \begin{pmatrix} 0 \\ 1 \end{pmatrix} U$  when,  $X(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ .

[L2,CO5] 7M

Find the solution of the state equation for the unit step input.

[L2,CO5] 5M

$$y + 2y + 3y + 4y = u$$

b. Diagonalize the following system matrix 
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 3 & 0 & 2 \\ -12 & -7 & -6 \end{pmatrix}$$

[L1,CO5] 5M

[L1,CO5] 5M

[L1,CO5] 5M

$$\dot{X} = Ax + Bu$$
 and  $y = Cx + Du$ 

[L1,CO5] 2M

[L3,CO5] 2M

[L2,CO5] 2M

[L2,CO5] 2M

[L3,CO5] 2M

Prepared by: J.Gowrishankar & Hari

# <u>UNIT –I</u>

# **CONTROL SYSTEMS CONCEPTS**

| 1) In <sub>-</sub> | controlsystems the control                                   | ol action is dependent on the desired output   | [      | ] |
|--------------------|--------------------------------------------------------------|------------------------------------------------|--------|---|
|                    | A) Open loop                                                 | B) Closed loop                                 |        |   |
|                    | C) Both (A) & (B)                                            | D) None                                        |        |   |
| 2) The             | e Transfer function is the ratio of                          |                                                | [      | ] |
|                    | A) L[O/P] to L[I/P]                                          | B) L[I/P] to L[O/P] with Zero initial cond     | itions |   |
|                    | C) L[I/P] to L[O/P]                                          | D) L[O/P] to L[I/P] with Zero initial cond     | itions |   |
| 3) For             | Impulse input, the output response                           | e C(s) is equal to.                            | [      | ] |
|                    | A) $R(s)$                                                    | B) E(s)                                        |        |   |
|                    | C) <b>G</b> (s)                                              | D) B(s)                                        |        |   |
| 4) The             | e mass will offer an opposing force                          | whichis proportional of the body               | [      | ] |
|                    | A) Displacement                                              | B) Velocity                                    |        |   |
|                    | C) Acceleration                                              | D) None                                        |        |   |
| 5) The             | e Dash-pot has displacement at both                          | n ends then the opposing force is proportional | to [   | ] |
|                    | of the body                                                  |                                                |        |   |
|                    | A) Velocity                                                  | B)Differential Velocity                        |        |   |
|                    | C) Differential displacement                                 | D) None                                        |        |   |
| 6) Blo             | ock diagrams can be used used to re                          | present                                        | [      | ] |
|                    | A) Linear systems                                            | B)Non-Linear systems                           |        |   |
|                    | C) Both (A) & (B)                                            | D) None                                        |        |   |
| 7) Th              | ree blocks with gains 2,-5and10 are                          | e connected in parallel. The total gain is     | [      | ] |
|                    | A) -100                                                      | B) -07                                         |        |   |
|                    | C) 100                                                       | D) 07                                          |        |   |
| 8)                 | converts the angular posi                                    | tion of the shaft into electrical signal       | [      | ] |
|                    | <ul><li>A) DCServomotor</li><li>C) Tacho generator</li></ul> | B) AC Servomotor<br>D) Synchro                 |        |   |
| 9) The             | e C.E of an armature controlled dc                           | servomotor is order equation                   | [      | ] |
|                    | A) First                                                     | B) Second                                      |        |   |
|                    | C) Third                                                     | D) Zero                                        |        |   |
|                    | <u>r</u>                                                     | 2 3 4 1 °S                                     |        |   |
|                    |                                                              | 7.1 +1 +1                                      |        |   |

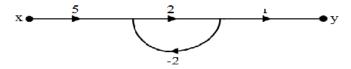
CONTROL SYSTEMS

]

10) In the above signal flow graph of figure the gain c/r willbe

ſ

A)11/9


B) 24/23

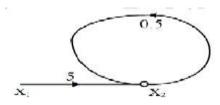
C) 22/15

- D) 44/23
- 11) In the signal flow graph of figure y/x equal

1

[




A)3

B)2

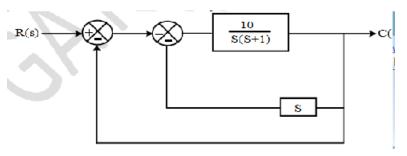
C)5/2

D)NONE

- **GATE 1997**
- 12) In the signal flow Graph shownin figure  $X_2=TX_1$  where T, is equal



]


A)10

B)5

C)2.5

D)none

- **GATE 1987**
- 13.For the system shown in figure the transfer function is\_\_\_\_\_ 1



A) $10/s^2+s+10$ 

 $B)10/s^2+11s+1$ 

 $C)10/s^2+10$ 

- $D)10/s^2+11s+10$
- **GATE 1987**
- 14) In force-voltage analogy, Mass element is equal to \_\_\_\_\_

[ ]

A) Resistance

B) Inductance

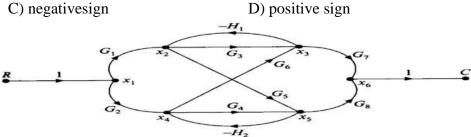
C) Capacitance

- D) Conductance
- 15) The spring will offer an opposing force which is proportional \_\_\_\_ of the body
- ſ 1

A) Velocity

B)Differential Velocity

C) Displacement


D) Differential displacement

]

]

| A) Resistance                               | B) Inductance                                  |    |
|---------------------------------------------|------------------------------------------------|----|
| C) Capacitance                              | D) Conductance                                 |    |
| · •                                         | Is then the opposing force is proportional to_ | of |
| The body                                    |                                                | [  |
| A) Velocity                                 | B)Differential Velocity                        |    |
| C) Differential displacement                | D)None                                         |    |
| 29) In force-voltage analogy, dashpot eleme | ent is equal to                                | [  |
| A) Resistance                               | B) Inductance                                  |    |
| C) Capacitance                              | D) Conductance                                 |    |
| 30) Regenerative feedback implies feedback  | x with                                         | [  |
| A) Oscillations                             | B) step input                                  |    |
| C) negativesign                             | D) positive sign                               |    |
| -H                                          | 1                                              |    |

[ ]



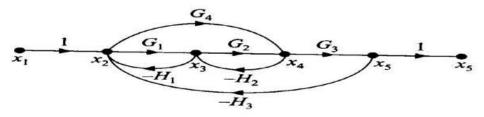
31)In the above SFG the no of forward paths and individual loops are \_\_\_\_\_ ]

A)4,2

B) 4,3

C) 6,3

D) 6,2


32) In the above SFG the no of two non-touching and three non-touching loops are \_\_\_\_ [

A) 1,0

B) 1,1

C) 2,1

D) 3,1



33) In the above SFG the no of forward paths and individual loops are \_\_\_\_\_ [

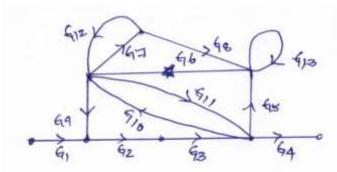
A)2,3

B) 3,2

C) 4,3

D) 3,5

34) In the above SFG the no of two non-touching and three non-touching loops are \_\_\_\_ [


A) 2,0

B) 3,0

C) 3,1

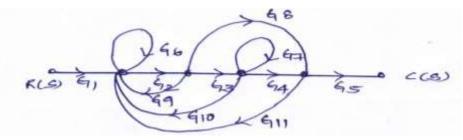
D) 4,2

**CONTROL SYSTEMS** 



35) In the above SFG the no of forward paths and individual loops are \_

[ ]


36) In the above SFG the no of two non-touching and three non-touching loops are \_\_\_\_\_

A) 2,0

B) 3,0

C) 3,1

D) 4,2



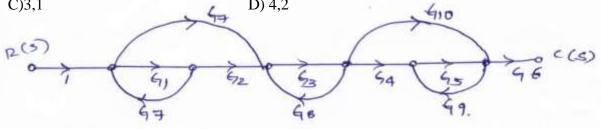
37) In the above SFG the no of forward paths and individual loops are \_\_\_\_\_ [ ]

A)2, 5

B) 3, 5

C) 2, 6

D) 3, 6


38) In the above SFG the no of two non-touching and three non-touching loops are \_\_\_\_ [

A) 2,0

B) 3,0

C)3,1

D) 4,2



39) In the above SFG the no of forward paths and individual loops are \_\_\_\_ [ ]

A)2,3

B) 2,4

C) 4,3

D) 3,5

40) In the above SFG the no of two non-touching and three non-touching loops are \_\_\_\_[

A) 2,0

B) 3,0

C) 3,1

D) 4,1

# <u>UNIT-II</u>

# TIME RESPONSE ANALYSIS

| 1) For | Type-1 system the steady state error due to s                     | tep input is equal to                                  | [        | ] |
|--------|-------------------------------------------------------------------|--------------------------------------------------------|----------|---|
|        | A) Infinity                                                       | B) Zero                                                |          |   |
|        | C)One                                                             | D) Constant                                            |          |   |
| 2) A s | ystem has the following T.FG(s) = $\frac{200(S+5)}{S^4(S+10)(S)}$ | $\frac{1}{2}(S+50)$ $\frac{1}{2}+3S+10$                |          |   |
| Tl     | he order and type of the system are respective                    | ely                                                    | [        | ] |
|        | A) 4& 7                                                           | B) 4& 9                                                |          |   |
|        | C) 7& 4`                                                          | D) 9& 4                                                |          |   |
| 3) Wh  | ich of the following systems is generally pref                    | Ferred                                                 | [        | ] |
|        | A) Undamped                                                       | B) Under damped                                        |          |   |
|        | C) Critically damped                                              | D) Over damped                                         |          |   |
| 4) The | damping frequency of oscillation is given by                      | Y                                                      | [        | ] |
|        | A) $\mathbf{W_d}$ = $\mathbf{W_r}\sqrt{1}$ - $\xi^2$              | $B)\mathbf{W_d} = \mathbf{W_r} \sqrt{1 + \xi^2}$       |          |   |
|        | $C)W_d=W_n\sqrt{1-\xi^2}$                                         | $D)\mathbf{W}_{d} = \mathbf{W}_{n} \sqrt{1 + \xi^{2}}$ |          |   |
| 5) For | a second order critically damped system, the                      | poles are                                              | [        | ] |
|        | A) Purely imaginary                                               | B) complex conjugate                                   |          |   |
|        | C) real & equal                                                   | D) real & unequal                                      |          |   |
| 6) The | solution of the differential equation $x^2+2x+2$                  | 2=0 is                                                 | [        | ] |
|        | A) Oscillatory                                                    | B) over damped                                         |          |   |
|        | C) under damped                                                   | D) critically damped                                   |          |   |
| 7)Giv  | en a unity feedback system with G(s)=K/s(s+                       | -4), the value of K for damping ratio                  | of 0.5 i | S |
|        | A)1                                                               | B)4                                                    | [        | ] |
|        | C)16                                                              | D)64                                                   |          |   |
| 8)Due  | to the derivative control, the rise time is                       |                                                        | [        | ] |
|        | A)Reduced                                                         | B) increased                                           |          |   |
|        | C) not effected                                                   | D) zero                                                |          |   |
| 9) The | effect of addition of pole at origin, increases                   | s the system                                           | [        | ] |
|        | A) Order                                                          | B)Type                                                 |          |   |
|        | C) Order and type                                                 | D) none                                                |          |   |
| 10) Th | ne type 2 system hasat the origin                                 |                                                        | [        | ] |
|        | A) No net pole                                                    | B) net pole                                            |          |   |
|        | C) simple pole                                                    | D) two poles                                           |          |   |
|        |                                                                   |                                                        |          |   |

Page 15 CONTROL SYSTEMS

| 11) The position and velocity error constants of a ty                   | pe-2 system are                           | [   | ] |
|-------------------------------------------------------------------------|-------------------------------------------|-----|---|
| A) Constant, constant                                                   | B) constant, infinity                     |     |   |
| C) zero, constant                                                       | D) infinity, infinity                     |     |   |
| 12) Velocity error constant of a system is measured                     | when the input to the system is unit      | [   | ] |
| A) Parabolic                                                            | B) ramp                                   |     |   |
| C) impulse                                                              | D) step                                   |     |   |
| 13)In case of type-1 system steady state error for pa                   | arabolic input is                         | [   | ] |
| A) Unity                                                                | B) infinity                               |     |   |
| C) zero                                                                 | D)10                                      |     |   |
| 14) For a second order over damped system, the po                       | les are                                   | [   | ] |
| A) Purely imaginary                                                     | B) complex conjugate                      |     |   |
| C) real & equal                                                         | D) real & unequal                         |     |   |
| 15) Position error constant of a system is measured                     | when the input tothesystem is unit        | [   | ] |
| A) Parabolic                                                            | B) ramp                                   |     |   |
| C) impulse                                                              | D) step                                   |     |   |
| 16) For Type-1 system the steady state error due to                     | step input is equal to                    | [   | ] |
| A) Infinity                                                             | B) Zero                                   |     |   |
| C)One                                                                   | D) Constant                               |     |   |
| 17)The positional error of the open loop transfer fu                    | nction $G(s) = 10/((s+2)(s+3))$ with unit | ity |   |
| feedback system.                                                        |                                           | [   | ] |
| A) 0.075                                                                | B) 1                                      |     |   |
| C) 0.375                                                                | D) 0.2                                    |     |   |
| 18) The value of $\xi$ of 0.6 in the step input of a $2^{nd}$ ord       | er system results in max overshoot of     | [   | ] |
| A)10                                                                    | B) 8.54                                   |     |   |
| C) 9.44                                                                 | D) 7.55                                   |     |   |
| 19) Order of the given open loop transfer function                      | $G(s) = \frac{K(s+2)}{s^2(s^2+2s+1)}$     | [   | ] |
| A) Zero                                                                 | B) one                                    |     |   |
| C)two                                                                   | D) four                                   |     |   |
| 20) Consider a feedback control system with loop t                      | ransfer function                          | [   | ] |
| $G(s) = \frac{K(1+0.5s)}{s(1+s)(1+2s)}$ The type of the closed loop sys | stem is                                   |     |   |
| A) zero                                                                 | B) one                                    |     |   |

Page 16 CONTROL SYSTEMS

| C) two                                                   | D) three                                      | GATE | E 1998 |
|----------------------------------------------------------|-----------------------------------------------|------|--------|
| 21) The settling time of 2 <sup>nd</sup> order system is | s times the time constant of the system.      | [    | ]      |
| A)One                                                    | B)Two                                         |      |        |
| C) Four                                                  | D) Six                                        |      |        |
| 22) For a second order under damped syste                | em, the poles are                             | [    | ]      |
| A) Purely imaginary                                      | B) complex conjugate                          |      |        |
| C) real & equal                                          | D) real & unequal                             |      |        |
| 23) The Laplace transform of impulse fund                | etion is                                      | [    | ]      |
| A) zero                                                  | B) one                                        |      |        |
| C)infinity                                               | D) none                                       |      |        |
| 24) For the unity feedback control with G(               | s) = $4/(S^2+8S+4)$ , the damping ratio is    | [    | ]      |
| A)2                                                      | B)1                                           |      |        |
| C) 0.707                                                 | D) 0.5                                        |      |        |
| 25) In time domain analysis response of th               | e system varies w.r.t                         | [    | ]      |
| A) Time                                                  | B) frequency                                  |      |        |
| C) both time and frequency                               | D) constant                                   |      |        |
| 26) Undamped natural frequency for S <sup>2</sup> +2S    | 5+1=0 is                                      | [    | ]      |
| A) Zero                                                  | B) one                                        |      |        |
| C)two                                                    | D) infinity                                   |      |        |
| 27) Order of the given open loop transfer f              | Function $G(s) = K/(S+1)$                     | [    | ]      |
| A) Zero                                                  | B) one                                        |      |        |
| C)two                                                    | D) three                                      |      |        |
| 28) The effect of addition of pole atorigin,             | increases the system                          | [    | ]      |
| A)Order                                                  | B)Type                                        |      |        |
| C) Order and type                                        | D) none                                       |      |        |
| 29) The type 1 system hasat                              | the origin.                                   | [    | ]      |
| A) No net pole                                           | B) net pole                                   |      |        |
| C) simple pole                                           | D) two poles                                  |      |        |
| 30) Position error constant of a system is n             | neasured when the input to the system is unit | ]    | ]      |
| A) Parabolic                                             | B) ramp                                       |      |        |
| C) impulse                                               | D) step                                       |      |        |
| 31) The steady state error due to a ramp in              | put for a type two system is                  | [    | ]      |
| A)0                                                      | B) infinity                                   |      |        |
| C)4                                                      | D)constant                                    |      |        |

Page 18

| 32). For a 2 <sup>nd</sup> order s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ystem with CLTF T(s) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $1/(S^2+0.1S+1)$ , the settlingtime for 5%               | band is[ ]               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------|
| A)6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | B)2                                                      |                          |
| C)3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A)6 B)2 C)3 D)4  The steady state error of a stable 'type 0' unity feedback system for a unitstep function is [ ] A)0 B) $1/1+K_P$ C) $\infty$ D) $1/K_P$ GATE 1990  A unity-feedback control system has the open-loop transfer function $G(s) = \frac{4(1+2s)}{s^2(s+2)}$ [ ]  the input to the system is a unity ramp, the steady-state error will be A) 0 B) 0.5 C) 2 D) Infinity GATE 1991  Type of the system given $G(s) = 2/S^2(2+S)$ is equal to A) Zero B) one C) two D) three  O) If the characteristic equation of a closed-loop system is $s^2+2s+2=0$ , then the system is [ ] A) Overdamped B) Critically damped C) Under damped D) undamped GATE 1998  O) Consider a system with the T.F $G(s) = \frac{(s+6)}{(Ks^2+s+6)}$ . Its $\xi = 0.5$ then the value of K is [ ] A) $2/6$ B) 3 C) $1/6$ D) $6$ GATE 2002  O) For a 2nd order system, damping ratio $(\xi)$ is $0 < \xi < 1$ , then the roots of the C.E are [ ] A) real but not equal B) real and equal C) complex conjugates D) imaginary GATE 1995  O) A casual system having the transfer function $G(s) = \frac{1}{(s+2)}$ is excited with $10u(t)$ .  The time at which the output reaches 99% of its steady state value is [ ] A) 2.7 sec B) 2.5 sec C) 2.3 sec GATE 2004 |                                                          |                          |
| 33)The steady state e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rror of a stable 'type 0' u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | unity feedback system for a unitstep function            | tion is [ ]              |
| A)0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | B) 1/1+ <i>K</i> <sub>P</sub>                            |                          |
| C)∞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D) $1/K_P$                                               | GATE 1990                |
| 34) A unity-feedback                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | control system has the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | open-loop transfer function $G(s) = \frac{4(1)}{s^2(s)}$ | $\frac{(+2s)}{(+2)}$ [ ] |
| if the input to the sys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | tem is a unity ramp, the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | steady-state error will be                               |                          |
| A) 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | B) 0.5                                                   |                          |
| C) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D) Infinity                                              | GATE 1991                |
| 35) Type of the system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $m givenG(s) = 2/S^2(2+S)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | is equal to                                              | [ ]                      |
| A) Zero                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | B) one                                                   |                          |
| C)two                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D) three                                                 |                          |
| 36) If the characterist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | tic equation of a closed-l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | oop system is $s^2+2s+2=0$ , then the sy                 | stem is[ ]               |
| A) Overdamp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | oed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B) Critically damped                                     |                          |
| C) Under dan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nped                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | D) undamped                                              | GATE 1998                |
| 37) Consider a system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | m with the T.F G(s)= $\frac{(Ks)}{(Ks)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $(s+6)$ 2 $(s+6)$ . Its $\xi = 0.5$ then the value of    | K is [ ]                 |
| A) 2/6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | B) 3                                                     |                          |
| C) 1/6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D) 6                                                     | GATE 2002                |
| 38) For a 2nd order s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ystem, damping ratio ( $\xi$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ) is $0 < \xi < 1$ , then the roots of the C.E a         | re [ ]                   |
| A) real but no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ot equal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B) real and equal                                        |                          |
| C) complex c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | onjugates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D) imaginary                                             | GATE 1995                |
| 39) A casual system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | having the transfer funct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ion G(s)= $\frac{1}{(s+2)}$ is excited with $10u(t)$     | ).                       |
| The time at which                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | th the output reaches 999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6 of its steady state value is                           | [ ]                      |
| C)3 D)4  33)The steady state error of a stable 'type 0' unity feedback system for a unitstep function is [ ]  A)0 B) $1/1+K_P$ C) $\infty$ D) $1/K_P$ GATE 1990  34) A unity-feedback control system has the open-loop transfer function $G(s) = \frac{4(1+2s)}{s^2(s+2)}$ [ ]  If the input to the system is a unity ramp, the steady-state error will be  A) 0 B) 0.5 C) 2 D) Infinity GATE 1991  35) Type of the system given $G(s) = 2/S^2(2+S)$ is equal to A) Zero B) one C) two D) three  36) If the characteristic equation of a closed-loop system is $s^2+2s+2=0$ , then the system is [ ] A) Overdamped B) Critically damped C) Under damped D) undamped GATE 1998  37) Consider a system with the T.F $G(s) = \frac{(s+6)}{(Ks^2+s+6)}$ . Its $\xi = 0.5$ then the value of K is [ ]  A) $2/6$ B) 3 C) $1/6$ D) $6$ GATE 2002  38) For a 2nd order system, damping ratio $(\xi)$ is $0 < \xi < 1$ , then the roots of the C.E are [ ] A) real but not equal B) real and equal C) complex conjugates D) imaginary GATE 1995  39) A casual system having the transfer function $G(s) = \frac{1}{(s+2)}$ is excited with $10u(t)$ .  The time at which the output reaches 99% of its steady state value is [ ] A) 2.7 sec B) 2.5 sec |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                          |                          |
| C) 2.3 sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D) 2.1 sec                                               | GATE 2004                |
| 40) Order of the give                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n open loop transfer fun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ction G(s) = $\frac{(s+2)}{s(s^2+2s+1)}$                 | [ ]                      |
| A) Zero                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | B) one                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C) two D) three                                          | ;                        |

CONTROL SYSTEMS

# <u>UNIT –III</u>

# STABILITY ANALYSIS IN CONTROL SYSTEMS

| CONTROL SYSTEMS                                                 |                                                         | Page    | 19 |
|-----------------------------------------------------------------|---------------------------------------------------------|---------|----|
| A) decrease                                                     | B) increase                                             |         |    |
| 8) Adding pole results gain n                                   | nargin                                                  | [       | ]  |
| C) 48                                                           | D)64                                                    |         |    |
| A) 16                                                           | B) 32                                                   |         |    |
| Themaximum Value of K for which t                               | he unity feedback system will be stable.                | [       | ]  |
| 7) The open loop transfer function of                           | The system is given by $G(s) = \frac{K}{S(S+2)(S+4)}$ . |         |    |
| C) Root locus branches                                          | D) Asymptotes                                           |         |    |
| A) Break away points                                            | B) Unstablepoles                                        |         |    |
| And a denominator polynomial of degr                            | ee 'n' then the integer n-m represent the number of     | ]       | ]  |
| 6) If the OLTF of an unity feedback s                           | system is the ration of numerator polynomial of de      | gree 'n | ı' |
| C) conditionally stable                                         | D) marginally stable                                    |         |    |
| A) stable                                                       | B) unstable                                             |         |    |
| $G(s) = \frac{5(S+1)}{S^2(S+2)}$ . The stability characteristic | stics of the open loop configuration.                   | ]       | ]  |
| 5) The open loop transfer function of                           | a unity feedback control system is given by             |         |    |
| D) None                                                         |                                                         |         |    |
| C) both A and B                                                 |                                                         |         |    |
| B) coefficients should be zero                                  | • •                                                     |         |    |
| •                                                               | an of the routh array is positive                       | L       | J  |
| 4) The necessary condition of the Ro                            | ,                                                       | [       | 1  |
| C)-2 + j, -2 - j                                                | D) -2, 2                                                |         |    |
| A) -2,-2                                                        | B) -2,-1                                                | L       | J  |
| poles at                                                        | idol system is $O(s)=iO(s+2)$ the CEIT will have        | [       | 1  |
| ,                                                               | atrol system is $G(s)=K/(S+2)^2$ the CLTF will have     |         |    |
| C)Both                                                          | D) none                                                 |         |    |
| A)Break-in point                                                | B) breakaway point                                      | L       | J  |
| ,                                                               | between pole and zero then there exist                  | [       | ]  |
| C) conditionally stable                                         | D) nothing can said about stability                     |         |    |
| Then thesystem is  A) Stable                                    | B) unstable                                             | Ĺ       | J  |
| Than the system is                                              |                                                         | Г       | 1  |

| C)AorB                                        | D) none                                                   | _        |    |
|-----------------------------------------------|-----------------------------------------------------------|----------|----|
| 9) The rootlocus is a                         |                                                           | [        | ]  |
| A) time domain approach                       | B) frequency domain approach                              |          |    |
| C) combination of both                        | D) None                                                   |          |    |
| 10) The OLTF of a unity feedback system       | is given as $G(s) = \frac{K(S+2)}{S(S^2+2S+2)}$ .         |          |    |
| The angles of root locus Asymptotes are       |                                                           | [        | ]  |
| A) $+90^{0}$ ,- $90^{0}$                      | B) $+60^{0}$ - $60^{0}$                                   |          |    |
| C) $+120^{\circ}$ , $-120^{\circ}$            | D) $+360^{\circ}$ , $-360^{\circ}$                        |          |    |
| 11) The no.of. roots of the equation $2S^4$ + | $S^3+3$ $S^2+5$ S+7=0 that lies in the right half of      | S-plane  | [] |
| A)0                                           | B)1                                                       |          |    |
| C)2                                           | D)3                                                       |          |    |
| 12) Loop TF is K(S+1)(S+2))/((S+4)(S+6)       | ) for K=0 closed loop poles are at.                       | [        | ]  |
| A) -1,-2                                      | B)-4,-6                                                   |          |    |
| C)∞, ∞                                        | D)0,0                                                     |          |    |
| 13) The number of changes in first column     | n of Routh array represents                               | ]        | ]  |
| A) Stability                                  | B) unstability                                            |          |    |
| C) Number of roots lie on right sid           | leof s-plane D) both b and c                              |          |    |
| 14) The stability of the system can be incr   | eased by adding                                           | [        | ]  |
| A) Pole                                       | B) zero                                                   |          |    |
| C) both                                       | D) none                                                   |          |    |
| 15) The root locus of system with G(s) H(     | s)= $K(S+1)/(S^2(S+3.6))$ has how many asymptotic         | ototes[  | ]  |
| A) one point                                  | B) two points                                             |          |    |
| C) +j , -j                                    | D) three points                                           |          |    |
| 16) The roots of the characteristic equation  | n lies on the left of S-plane, then system is             | [        | ]  |
| A) stable                                     | B) unstable                                               |          |    |
| C) conditionally stable                       | D) marginally stable                                      |          |    |
| 17) The characteristic equation of a system   | n is given by $S^4 + 8 S^3 + 12 S^2 + 8S + K = 0$ .for th | e syster | n  |
| To remain stable, the value of gain K sh      | nould be                                                  | [        | ]  |
| A) 0                                          | B) $0 < K < 11$                                           |          |    |
| C) K > 11                                     | D) Positive                                               |          |    |

Page 20 CONTROL SYSTEMS

| 18) The open                                                | a loop transfer function of a unity feedback co       | ontrol system is given by             | [       | ] |
|-------------------------------------------------------------|-------------------------------------------------------|---------------------------------------|---------|---|
| G(s)=5(S+                                                   | $-1)/S^2$ (S+2). The stability characteristics of the | e closedloopconfiguration.            |         |   |
| A) St                                                       | able                                                  | B) unstable                           |         |   |
| C) co                                                       | onditionally stable                                   | D) marginally stable                  |         |   |
| 19) The char                                                | acteristic equation of a feed back control syst       | em is $2S^4 + S^3 + 3S^2 + 5S + 10 =$ | :0.     |   |
| The Number                                                  | of rootsin the right half of Splane are               |                                       | [       | ] |
| A)0                                                         |                                                       | B)1                                   |         |   |
| C)2                                                         |                                                       | D)3                                   |         |   |
| 20) The root                                                | locus is                                              |                                       | [       | ] |
| A) an                                                       | algebraic method                                      | B) a graphical method                 |         |   |
| C) co                                                       | ombination of both                                    | D)None                                |         |   |
| 21) Break po                                                | ints can be                                           |                                       | [       | ] |
| A) or                                                       | nly real                                              | B) only complex                       |         |   |
| C) rea                                                      | al or complex                                         | D) None                               |         |   |
| 22) Asympto                                                 | otes can intersect                                    |                                       | [       | ] |
| A) only on the negative realaxis B) only on the positive re |                                                       |                                       | axis    |   |
| C) an                                                       | ywhere on the real axis                               | D) imaginary axis                     |         |   |
| 23) The open                                                | n loop transfer function of a system is G(s)H(s       | s = k/s(s+1)(s+2). Its centroid is    | s at s= |   |
| A)-2.                                                       | 5                                                     | B)-4                                  | [       | ] |
| C)-4.                                                       | 5                                                     | D)-1                                  |         |   |
| 24) If the roo                                              | ots of characteristic equation lie on imaginary       | axis the system is                    | [       | ] |
| A) St                                                       | able                                                  | B) unstable                           |         |   |
| C) Co                                                       | onditionally stable                                   | D) marginally stable                  |         |   |
| 25) If first en                                             | ntry in any row of Routh array is negative the        | system is                             | ]       | ] |
| A) St                                                       | ableB) unstable                                       |                                       |         |   |
| C) Co                                                       | onditionally stableD) marginally stable               |                                       |         |   |
| 26) The num                                                 | ber of changes in first column of Routh array         | represents                            | [       | ] |
| A) St                                                       | abilityB) unstability                                 |                                       |         |   |
| C) Nu                                                       | umber of roots lie on right sideof s-planeD) be       | oth B and C                           |         |   |
| 27) By addin                                                | ng the pole in the transfer function, The rootlo      | cus shift towards                     | [       | ] |

Page 21 CONTROL SYSTEMS

| (S+1)(S+2)<br>(A) 0                                | (B) 1                                                                   |                |   |
|----------------------------------------------------|-------------------------------------------------------------------------|----------------|---|
| $T(s) = \frac{K}{(s+1)(s+2)}$ . The gain margin of | the system in dB is given by                                            | [              | ] |
| 36) The open – loop transfer function              | n of a unity – gain feedback control system is given                    | by             |   |
| C) $90^0$                                          | D) ∞ <b>GATE 2002</b>                                                   |                |   |
| A) $0^0$                                           | B) 63.4 <sup>0</sup>                                                    |                |   |
| 35) The phase margin of a system with              | the open – loop transfer function $G(s)H(s) = \frac{(1-s)}{(s+1)(s+2)}$ | [              | ] |
| D) Will oscillate at low frequ                     | iency GATI                                                              | E <b>200</b> 0 | ) |
| C) May be unstable, dependi                        | ng on the feedback factor                                               |                |   |
| B) Will be stable for all frequ                    | uency                                                                   |                |   |
| A) Will always be unstable a                       | t high frequency                                                        |                |   |
| open – loop transfer function. The ar              | mplifier                                                                | [              | ] |
| 34)An amplifier with resistive negat               | ive feedback has two left half plane poles in its                       |                |   |
| C) Two                                             | D) Three GATI                                                           | E <b>1998</b>  | 3 |
| A) Zero                                            | B) One                                                                  |                |   |
| 33) The number of roots of $s^3 + 5s^2$            | +7s + 3 = 0 in the left half of the s – plane is                        | [              | ] |
| C)Both                                             | D) none                                                                 |                |   |
| A)Break-in point                                   | B) breakaway point                                                      |                |   |
| 32) If there is a root locus on real ax            | is between two zeros then there exist                                   | [              | ] |
| C) ∞                                               | D)0,0                                                                   |                |   |
| A)-1,-2                                            | B)-4,-6                                                                 |                |   |
| 31) Loop TF isfor K=0 closed loopp                 | oles are at.                                                            | [              | ] |
| C) conditionally stable                            | D) marginally stable                                                    |                |   |
| A) stable                                          | B) unstable                                                             | _              | - |
| , •                                                | equation have negative real parts, then the system is                   | ſ              | ] |
| C) 4 poles and 3 zeros                             | D) 5 poles and 2 zeros                                                  |                |   |
| A) 3 poles and 1 zero                              | B) 4 poles and 2 zeros                                                  | L              | J |
| 29) Root loci of a system has three a              | symptotes the systemmay have                                            | [              | 1 |
| C) conditionally stable                            | D) nothing can said about sta                                           | ability        |   |
| A) Stable                                          | B) unstable                                                             |                |   |
|                                                    | any finite input, then the system is                                    | [              | ] |
| C) imaginary axis                                  | D) All                                                                  |                |   |
| A) Right half of S plane                           | B) left half of S plane                                                 |                |   |

Page 22 CONTROL SYSTEMS

| (C) 20                                         | $(D) \infty$                       | GAT                                  | E 2006    |        |
|------------------------------------------------|------------------------------------|--------------------------------------|-----------|--------|
| 37) The gain margin for the system with o      | pen – loop transfer functio        | on $G(s)H(s) = 2(1+s)/s$             | s² is [   | ]      |
| $(A) \infty$                                   | (B) 0                              |                                      |           |        |
| (C) 1                                          | $(D) -\infty$                      | <b>GATE 2004</b>                     |           |        |
| 38) If the closed – loop transfer function o   | f a control system is given        | as $T(s) = \frac{(s-5)}{(s+2)(s+3)}$ | then i    | t is   |
|                                                |                                    |                                      | [         | ]      |
| (A) an unstable system                         | (B) an uncontrollable              | e system                             |           |        |
| (C) a minimum phase system                     | (D) a non – minimur                | n phase system                       | GAT       | E 2007 |
| 39) Consider a characteristic equation give    | en by $3s^3 + 5s^2 + 6s + K$       | + 10=0 . The conditi                 | on for    |        |
| stability is                                   |                                    |                                      | [         | ]      |
| (A) $K > 5$                                    | (B) - 10 < K                       |                                      |           |        |
| (C) $K > -4$                                   | (D) - 10 < K <                     | -4                                   | GAT       | E 1988 |
| 40) An electromechanical closed-loop con       | trol system has the follow         | ing characteristic eq                | uation;   |        |
| $s^3 + 6Ks^2 + (K+2) + 8 = 0$ . Where K is the | e forward gain of the syste        | em. The condition fo                 | or closed | l      |
| loop stability is:                             |                                    |                                      | [         | ]      |
| A) $K = 0.528$                                 | B)2                                |                                      |           |        |
| C)3                                            | D) none                            |                                      | GAT       | E 1990 |
|                                                | <u>UNIT-IV</u>                     |                                      |           |        |
|                                                | CY RESPONSE ANALY                  | <u>YSIS</u>                          |           |        |
| 1) A system is unstable when                   |                                    |                                      | [         | ]      |
| $A)\omega_{gc}=\omega_{pc}$                    | $B)\omega_{gc}<\omega_{pc}$        |                                      |           |        |
| $C)\omega_{gc}>\omega_{pc}$                    | $D)\omega_{gc}=\omega_{pc}=0$      |                                      |           | _      |
| 2) $\xi$ = 0, Mr is given by                   | 710                                |                                      | [         | ]      |
| A)Infinity                                     | B)0                                |                                      |           |        |
| C)1                                            | D)4                                |                                      | r         | ,      |
| 3) The slope of $(1+j\omega)$ is               | D) . 40 II                         |                                      | [         | J      |
| A) +20db                                       | B) +40db                           |                                      |           |        |
| C)-40db                                        | D)-20db $\frac{1}{(a^2+2a+2)}$ The | alama of the law free                |           |        |
| 4)A unity feedback system $G(s)=(10(s+2))$     | $W(S^{-}(S+1)(S^{-}+2S+2))$ . The  | stope of the low freq                |           | 1      |
| asymptote is                                   | TLAN (C                            | P/dog                                | [         | ]      |
| A)-20dB/dec                                    | B)-40dE                            |                                      |           |        |
| C)-80dB/dec                                    | D)80dB                             | ruec                                 |           |        |

Page 23 CONTROL SYSTEMS

|                                                                | QUESTION BANK                                                           | 2020-2 |
|----------------------------------------------------------------|-------------------------------------------------------------------------|--------|
| 5) The damping frequency of oscillation is giv                 | en by                                                                   | ]      |
| $A)\mathbf{W}_{d}=\mathbf{W}_{r}\mathbf{V}1-\mathbf{\xi}^{2}$  | B) $W_d=W_rV1+\xi^2$                                                    |        |
| C) $\mathbf{W}_d = \mathbf{W}_n \mathbf{V} 1 - \mathbf{\xi}^2$ | $D)\mathbf{W}_{d} = \mathbf{W}_{n} \mathbf{V} 1 + \boldsymbol{\xi}^{2}$ |        |
| 6) The effect of addition of pole increases the                | system [                                                                | ]      |
| A) Order                                                       | B)Type                                                                  |        |
| C) Order and type                                              | D) none                                                                 |        |
| 7) At the gain crossover frequency                             | ]                                                                       | ]      |
| A)G(jw)H(jw)=0dB                                               | B) $G(jw)H(jw)=1 dB$                                                    |        |
| C) $G(jw)H(jw) = -20 dB$                                       | D)G(jw)H(jw)=20dB                                                       |        |
| 8) The reciprocal of the magnitude of OLTF at                  | t phase cross over frequency is called [                                | ]      |
| A) Phase margin                                                | B)gain margin                                                           |        |
| C) Phase plot                                                  | D) Magnitude plot                                                       |        |
| 9) Angle of $G(jw) H(jw) = 0at$                                | ]                                                                       | ]      |
| A) gain cross over frequency                                   | B) Phase cross over frequency                                           |        |
| C)Both                                                         | D)none                                                                  |        |
| 10) From the bode plots it is observed that the                | gain cross over frequency is greater than                               |        |
| phase cross overfrequency. The system is called                | ed[                                                                     | ]      |
| A) Stable                                                      | B)Marginally stable                                                     |        |
| C) Conditionally stable                                        | D) Unstable                                                             |        |
| 11) From the bode plots it is observed that the                | gain cross over frequency is lesser than                                |        |
| phase crossover frequency. The system is called                | ed[                                                                     | ]      |
| A) Stable                                                      | B)Marginally stable                                                     |        |
| C) Conditionally stable                                        | D) Unstable                                                             |        |
| 12) For the pole factor $\frac{1}{(S+5)}$ the cornerfrequence  | ey is [                                                                 | ]      |
| A)1/5                                                          | B)5                                                                     |        |
| C)-1/5                                                         | D)-5                                                                    |        |
| 13) At the phase crossover frequency w=10 ra                   | d / sec, G(jw)H(jw)=15 Db. It's gain margin                             | is[ ]  |
| A) 15 dB                                                       | B) 0dB                                                                  |        |
| C)-15dB                                                        | D) cannot be predicted                                                  |        |
| 14) The frequency at which the -3db magnitud                   | e is zero is called [                                                   | ]      |
| A)Cut-offrate                                                  | B)Cut-offResonant                                                       |        |
| C) Cut-off frequency                                           | D)Bandwidth                                                             |        |

|                                                              | QUESTION BANK                                 | 20 | )20-21 |
|--------------------------------------------------------------|-----------------------------------------------|----|--------|
| 15)The slope of $(1+j\omega)$ is                             |                                               | [  | ]      |
| A) +20db                                                     | B) +40db                                      |    |        |
| C)-40db                                                      | D)-20db                                       |    |        |
| 16) Magnitude of $G(jw) H(jw) = 1$ at                        |                                               | [  | ]      |
| A) gain cross over frequency                                 | B) Phase cross over frequency                 |    |        |
| C)Both                                                       | D) none                                       |    |        |
| 17)1 DB=                                                     |                                               | [  | ]      |
| A) $20\log_e G(j\omega)$                                     | B) G(j ω)                                     |    |        |
| C) $20\log_{10}G(j\omega)$                                   | D) $-20\log_{10}G(j\omega)$                   |    |        |
| 18) Order of the given open loop transfer fu                 | unction $G(s) = K(S+2) / S^2 (S^2+2S+1)$ ]    | [  | ]      |
| A) Zero                                                      | B) one                                        |    |        |
| C)two                                                        | D) four                                       |    |        |
| 19) Type of the system given in problem no                   | o. 14is equal to                              | [  | ]      |
| A) Zero                                                      | B) one                                        |    |        |
| C)two                                                        | D) three                                      |    |        |
| 20) The settling time of $\Pi^{nd}$ order system is          | times the time constant of the system.        | [  | ]      |
| A)One<br>C) Four                                             | B)Two<br>D) Six                               |    |        |
| 21) For a second order under damped system, the poles are    |                                               | [  | ]      |
| A) Purely imaginary                                          | B) complex conjugate                          |    |        |
| C) real & equal                                              | D) real & unequal                             |    |        |
| 22) A system is unstable when                                |                                               | [  | ]      |
| A)ωgc=ωpc                                                    | B)wgc <wpc< td=""><td></td><td></td></wpc<>   |    |        |
| C)wgc>wpc                                                    | D)\omegage=\omegapc=0                         |    |        |
| 23)Gain cross over frequency is the one at whichG(jω)H(jω)is |                                               | [  | ]      |
| A) equal to1                                                 | B) equal to-1                                 |    |        |
| C)>1                                                         | D) <-1                                        |    |        |
| 24)The slope of $1/(1+j\omega)$ is                           |                                               | [  | ]      |
| A) +20db                                                     | B) +40db                                      |    |        |
| C)-40db                                                      | D)-20db                                       |    |        |
| 25) The phase crossover frequency is the fre                 | equency at which the phase of $G(j\omega)$ is | [  | ]      |
| A) 0°                                                        | B)90°                                         |    | •      |
| C) 270°                                                      | D) 180°                                       |    |        |

QUESTION BANK 2020-21

| <ul><li>(C) which has poles in the right-</li><li>(D) which has polesin the left-has</li></ul> | 1                                           |                  |           |         |
|------------------------------------------------------------------------------------------------|---------------------------------------------|------------------|-----------|---------|
|                                                                                                | enction $G(s)H(s)$ of a closed loop control | system           | passes    |         |
| through the point $(-1, j, 0)$ in the $G(s)H$                                                  |                                             |                  |           |         |
| The phase margin of the system is of th                                                        | e system is                                 | [                | ]         |         |
| A) $0^{0}$                                                                                     | B) 45 <sup>0</sup>                          |                  |           |         |
| C) $90^{\circ}$                                                                                | D) 180 <sup>0</sup>                         | GAT              | E: 200    | 4       |
| 36) The Nyquist plot of G(S) H(S) for a                                                        | closed loop control system, passed throu    | ıgh (-1,j        | 0)        |         |
| pointinGHplane. The gain margin of th                                                          | e system in dB is equal to                  |                  | [         | ]       |
| (A) infinite                                                                                   | (B) greater than zero                       | O                |           |         |
| (C) less than zero                                                                             | (D) zero                                    |                  | GATI      | E 2006  |
| 37)In the Bode – plot of a unity feedbac                                                       | ck control system, the value of phase of C  | G(jω) at         | the gain  | n cross |
| over frequency is $-125^{\circ}$ . The phase mar                                               | rgin of the system is                       |                  | ]         | ]       |
| $(A)-125^0$                                                                                    | $(B) - 55^0$                                |                  |           |         |
| $(C)55^0$                                                                                      | $(D)125^0$                                  | <b>GATE 1998</b> |           |         |
| 38) In a Bode magnitude plot, which on                                                         | ne of the following slopes would be exhib   | oited ath        | nigh free | quency  |
| by 4th order all-pole system?[]                                                                |                                             |                  |           |         |
| A) - 80  dB/decade                                                                             | B) - 40 dB/decade                           |                  |           |         |
| C) + 40 dB/decade                                                                              | D) + 80 dB/decade                           | GAT              | E: 201    | 4       |
| 39) For the equation, $s^3 - 4s^2 + s + 6 = 0$                                                 | the number of roots in the left half ofs -p | lane wi          | ll be[    | ]       |
| A) Zero                                                                                        | B) One                                      |                  |           |         |
| C) Two                                                                                         | D) Three                                    | GAT              | E: 200    | 4       |
| 40)The gain margin of a unity feed back                                                        | k control system with the $OLTFG(s)=s+1$    | $1/s^2$          | [         | ]       |
| A) 0                                                                                           | B) $1/\sqrt{2}$                             |                  |           |         |
| C) √ 2                                                                                         | D) 3                                        | GAT              | E: 200    | 5       |
|                                                                                                | <u>UNIT-V</u>                               |                  |           |         |
| STATE SPACE AT                                                                                 | NALYSIS OF CONTINUOUS SYSTE                 | MS               |           |         |
| 1. $\emptyset(s)$ is called                                                                    |                                             |                  | [         | ]       |
| A)system matrix                                                                                | B) state transition matrix                  |                  |           |         |
| C) Resolvent Matrix                                                                            | D) Resolution Matrix                        |                  |           |         |

Page 27 CONTROL SYSTEMS

CONTROL SYSTEMS

QUESTION BANK 2020-21

Page 28

| 12)Which among the following constitute the state                         | model of a system in addition to state   | e equation | ons? |
|---------------------------------------------------------------------------|------------------------------------------|------------|------|
| A) Input equations                                                        | B) Output equations                      |            |      |
| C) State trajectory                                                       | D) State vector                          | [          | ]    |
| 13)Which among the following plays a crucial role                         | in determining the state of dynamic s    | system?    | •    |
| A) State variables                                                        | B) State vector                          |            |      |
| C) State space                                                            | D) State scalar                          | [          | ]    |
| 14)Which among the following are the interconnect                         | eted units of state diagram representati | ion?       |      |
| A) Scalars                                                                | B) Adders                                |            |      |
| C) Integrators                                                            | D) All of the above                      | [          | ]    |
| 15)State space analysis is applicable even if the ini                     | tial conditions are                      | [          | ]    |
| A)Zero                                                                    | B) Non-zero                              |            |      |
| C)Equal                                                                   | D)Notequal                               |            |      |
| 16)Conventional control theory is applicable to                           | systems                                  | [          | ]    |
| A)SISO                                                                    | B) MIMO                                  |            |      |
| C) Time varying                                                           | D) Non-linear                            |            |      |
| 17) The number of elements in the state vector is re-                     | efered to of the system                  | [          | ]    |
| A) Order                                                                  | B) Characteristic Equation               |            |      |
| C) Type                                                                   | D)all                                    |            |      |
| 18)In $X(t) = AX(t) + BU(t)A$ is known as                                 |                                          | [          | ]    |
| A) System Matrix                                                          | B)InputMatrix                            |            |      |
| C) Output Matrix                                                          | D) Transmission Matrix                   |            |      |
| 19) $\operatorname{In} X^{\cdot}(t) = AX(t) + BU(t)\mathbf{B}$ isknown as |                                          | [          | ]    |
| A) System Matrix                                                          | B)InputMatrix                            |            |      |
| C) Output Matrix                                                          | D) Transmission Matrix                   |            |      |
| 20) In $Y(t) = CX(t) + DU(t)C$ isknown as                                 |                                          | [          | ]    |
| <ul><li>A) System Matrix</li><li>C) Output Matrix</li></ul>               | B)InputMatrix<br>D) Transmission Matrix  |            |      |
| 21) $InY(t) = CX(t) + DU(t)\mathbf{D}$ isknown as                         |                                          | [          | ]    |
| A) System Matrix                                                          | B)InputMatrix                            |            |      |
| C) Output Matrix                                                          | D) Transmission Matrix                   |            |      |
| 22)The state equations and the output equations to                        | gether are called                        | [          | ]    |
| A) state model                                                            | B)state equation                         |            |      |
| C) output equation                                                        | D)Dynamic Equation                       |            |      |

| 23) The characteristic equation of a state model is given by                            |                                                               | [    | ] |
|-----------------------------------------------------------------------------------------|---------------------------------------------------------------|------|---|
| A) $ \lambda I - A  = 0$                                                                | B) $ \lambda I + A  = 0$                                      |      |   |
| $C) \lambda I-A =1$                                                                     | D)0                                                           |      |   |
| 24) The roots of the characteristic equation are refe                                   | rred to asof the matrix A.                                    | [    | ] |
| A) state model                                                                          | B) eigen value                                                |      |   |
| C) output equation                                                                      | D)all                                                         |      |   |
| 25) The process of obtaining the state diagram of a                                     | system from its transfer function is                          | [    | ] |
| A) Diagonalization                                                                      | B)Phasevariable                                               |      |   |
| C) Decomposition                                                                        | D)all                                                         |      |   |
| 26) The matrix formed by placing the eigen vectors                                      | s together in column-wise is called                           | [    | ] |
| A) System Matrix                                                                        | B) Modal Matrix                                               |      |   |
| C) Transmission Matrix                                                                  | D)all                                                         |      |   |
| 27) Which theorm states that every square matrix A                                      | a satisfies its own characteristic equation                   | on.[ | ] |
| A) Cayley-Hamilton                                                                      | B) Kalman's                                                   |      |   |
| C) Gilberts                                                                             | D)all                                                         |      |   |
| 28) The concepts of controllability &observability                                      | were introduced by                                            | [    | ] |
| A) Cayley-Hamilton                                                                      | B)Kalman's                                                    |      |   |
| C) Gilberts                                                                             | D) all                                                        |      |   |
| 29) Controllability & observability can also be deter                                   | mined by method.                                              | [    | ] |
| A) Cayley-Hamilton                                                                      | B) Kalman's                                                   |      |   |
| C) Gilberts                                                                             | D) all                                                        |      |   |
| 30) The transfer function of a s/m can be obtained to                                   | from its state model by using the                             | [    | ] |
| formula $C(s)/R(s)=$                                                                    |                                                               |      |   |
| $A)C(SI-A)^{-1}B+D$                                                                     | B)C(SI-A)B+D                                                  |      |   |
| C)C(SI-A) <sup>-1</sup> 31) State model is said to be stable if allits eigen va         | D)all<br>llues have                                           | [    | ] |
| A) positivereal parts                                                                   | B)Negative real parts                                         |      |   |
| C)Both                                                                                  | D)None                                                        |      |   |
| 32) A state variable system $X(t) = \begin{bmatrix} 0 & 1 \\ 0 & -3 \end{bmatrix} X(t)$ | $(t) + \frac{1}{0}U(t)$ with the initial condition            |      |   |
| $X(0) = [-1 \ 3]^T$ and the unit step input $u(t)$ has the sta                          | ate transition matrix                                         | [    | ] |
| A) $\begin{bmatrix} 1 & 1/3(1-e-3t) \\ 0 & e-3t \end{bmatrix}$ (B)                      | $\begin{bmatrix} 1 & 1/3(e-t-e-3t) \\ 0 & e-3t \end{bmatrix}$ |      |   |

]

Page 31

| C) $\begin{bmatrix} 1 & 1/3(e3-t-e-3t) \\ 0 & e-3t \end{bmatrix}$ (D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $0)\begin{bmatrix} 1 & 1/3(1-e-3t) \\ 0 & e-t \end{bmatrix} $                           | GATE 2005            |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------|------|
| 33) The number of ways in which STM can be com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | puted is                                                                                | [                    | ]    |
| A) 2 B) 3 C) 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D) 6                                                                                    |                      |      |
| 34) The state variable description of a linear autono                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mous system is, $X^0 = AX$ where                                                        | X is the two         |      |
| dimensional state vector and $A = \begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix}$ . The roots of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | of the characteristic equation are                                                      | <b>;</b> [           | ]    |
| A) $-2$ and $+2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B) $-j2$ and $+j2$                                                                      |                      |      |
| C) $-2$ and $-2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D) $+2$ and $+2$                                                                        | GATE 20              | 004  |
| 35) The state transition matrix for the system $X^{o} = A^{o}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\mathbf{A}\mathbf{X}$ with initial state $\mathbf{X}(0)$ is                            | ]                    | ]    |
| A) $(sI-A)^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B) $e^{At}X(0)$                                                                         |                      |      |
| C) $L^{-1}[(sI-A)^{-1}]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D) $L^{-1}[(sI-A)^{-1}X(0)]$                                                            | GATE 200             | 02   |
| 36) For the system, $X'(t) = \begin{bmatrix} 2 & 3 \\ 0 & 5 \end{bmatrix} X(t) + \frac{1}{0}U(t)$ where $X'(t) = \begin{bmatrix} 2 & 3 \\ 0 & 5 \end{bmatrix} X(t) + \frac{1}{0}U(t)$ where $X'(t) = \begin{bmatrix} 2 & 3 \\ 0 & 5 \end{bmatrix} X(t) + \frac{1}{0}U(t)$ where $X'(t) = \begin{bmatrix} 2 & 3 \\ 0 & 5 \end{bmatrix} X(t) + \frac{1}{0}U(t)$ where $X'(t) = \begin{bmatrix} 2 & 3 \\ 0 & 5 \end{bmatrix} X(t) + \frac{1}{0}U(t)$ where $X'(t) = \begin{bmatrix} 2 & 3 \\ 0 & 5 \end{bmatrix} X(t) + \frac{1}{0}U(t)$ where $X'(t) = \begin{bmatrix} 2 & 3 \\ 0 & 5 \end{bmatrix} X(t) + \frac{1}{0}U(t)$ is a system is uncontrollable and unstable $X'(t) = \begin{bmatrix} 2 & 3 \\ 0 & 5 \end{bmatrix} X(t) + \frac{1}{0}U(t)$ is a system is uncontrollable and unstable $X'(t) = \begin{bmatrix} 2 & 3 \\ 0 & 5 \end{bmatrix} X(t) + \frac{1}{0}U(t)$ is a system is uncontrollable and unstable $X'(t) = \begin{bmatrix} 2 & 3 \\ 0 & 5 \end{bmatrix} X(t) + \frac{1}{0}U(t)$ is a system is uncontrollable and unstable $X'(t) = \begin{bmatrix} 2 & 3 \\ 0 & 5 \end{bmatrix} X(t) + \frac{1}{0}U(t)$ is a system is uncontrollable. |                                                                                         | ts is true [         | ]    |
| C) The system is controllable and stable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                         |                      |      |
| D) The system is uncontrollable and stable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                         | GATE                 | 2002 |
| 37) The transfer function of the system describedby                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $d^2y/dt^2+dy/dt=du/dt+2u$                                                              |                      |      |
| with uasinput and yasoutputis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         | [                    | ]    |
| A) $s+2/s^2+s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B) $s+1/s^2+s$                                                                          |                      |      |
| C) $2/s^2 + s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $D)2s/s^2+s$                                                                            |                      |      |
| 38) Given a system represented by equations $X(t)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $= \begin{bmatrix} 2 & 0 \\ 0 & 4 \end{bmatrix} X(t) + \frac{1}{1}U(t) \text{ with } t$ | u as unit impu       | ılse |
| and with zero initial state, the output $y$ , become                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | es                                                                                      | [                    | ]    |
| A) $2e^{2t}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B) $4e^{2t}$                                                                            |                      |      |
| C) $2e^{4t}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | D) $4e^{4t}$ GA                                                                         | TE 2002              |      |
| 39) Given a system represented by equations $X(t)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $= \begin{bmatrix} -1 & 2 \\ 0 & 2 \end{bmatrix} X(t) + {0 \atop 1} U(t)$               | [                    | ]    |
| A) Stable and controllable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B) Stable but uncontrollable                                                            |                      |      |
| C) Unstable but controllable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | D) Unstable and uncontrollable                                                          | e GATE 2010          | )    |
| 40) A function $y(t)$ satisfies the following differentiation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | al equation : $dv(t)/dt+v(t)=\delta(t)$                                                 | where $\delta(t)$ is | the  |

y(t) can be of the form

A)  $e^t$ 

delta function. Assuming zero initial condition, and denoting the unit step function by u(t),

B)  $e^{-t}$ 

C)  $e^t u(t)$ 

D)  $e^{-t}u(t)$ 

**GATE 2008** 

Prepared by: J.Gowrishankar & Hari